The elimination half-life of oral atenolol tablets is approximately 6 to 7 hours, and there is no alteration of the kinetic profile of the drug by chronic administration. Following intravenous administration, peak plasma levels are reached within 5 minutes. Declines from peak levels are rapid (5- to 10-fold) during the first 7 hours; thereafter, plasma levels decay with a half-life similar to that of orally administered drug. Following oral doses of 50 mg or 100 mg, both beta-blocking and antihypertensive effects persist for at least 24 hours. When renal function is impaired, elimination of atenolol tablets is closely related to the glomerular filtration rate; significant accumulation occurs when the creatinine clearance falls below 35 mL/min/1.73m 2. (See DOSAGE AND ADMINISTRATION.)
In standard animal or human pharmacological tests, beta-adrenoreceptor blocking activity of atenolol tablets have been demonstrated by: (1) reduction in resting and exercise heart rate and cardiac output, (2) reduction of systolic and diastolic blood pressure at rest and on exercise, (3) inhibition of isoproterenol induced tachycardia, and (4) reduction in reflex orthostatic tachycardia.
A significant beta-blocking effect of atenolol tablets, as measured by reduction of exercise tachycardia, is apparent within one hour following oral administration of a single dose. This effect is maximal at about 2 to 4 hours, and persists for at least 24 hours. Maximum reduction in exercise tachycardia occurs within 5 minutes of an intravenous dose. For both orally and intravenously administered drug, the duration of action is dose related and also bears a linear relationship to the logarithm of plasma atenolol tablets concentration. The effect on exercise tachycardia of a single 10 mg intravenous dose is largely dissipated by 12 hours, whereas beta-blocking activity of single oral doses of 50 mg and 100 mg is still evident beyond 24 hours following administration. However, as has been shown for all beta-blocking agents, the antihypertensive effect does not appear to be related to plasma level.
In normal subjects, the beta 1selectivity of atenolol tablets have been shown by its reduced ability to reverse the beta 2-mediated vasodilating effect of isoproterenol as compared to equivalent beta-blocking doses of propranolol. In asthmatic patients, a dose of atenolol tablets producing a greater effect on resting heart rate than propranolol resulted in much less increase in airway resistance. In a placebo controlled comparison of approximately equipotent oral doses of several beta-blockers, atenolol tablets produced a significantly smaller decrease of FEV 1than nonselective beta-blockers such as propranolol and, unlike those agents, did not inhibit bronchodilation in response to isoproterenol.
Consistent with its negative chronotropic effect due to beta blockade of the SA node, atenolol tablets increase sinus cycle length and sinus node recovery time. Conduction in the AV node is also prolonged. Atenolol tablets are devoid of membrane stabilizing activity, and increasing the dose well beyond that producing beta blockade does not further depress myocardial contractility. Several studies have demonstrated a moderate (approximately 10%) increase in stroke volume at rest and during exercise.
In controlled clinical trials, atenolol tablets, given as a single daily oral dose, was an effective antihypertensive agent providing 24-hour reduction of blood pressure. Atenolol tablets have been studied in combination with thiazide type diuretics, and the blood pressure effects of the combination are approximately additive. Atenolol tablets are also compatible with methyldopa, hydralazine, and prazosin, each combination resulting in a larger fall in blood pressure than with the single agents. The dose range of atenolol tablets is narrow and increasing the dose beyond 100 mg once daily is not associated with increased antihypertensive effect. The mechanisms of the antihypertensive effects of beta-blocking agents have not been established. Several possible mechanisms have been proposed and include: (1) competitive antagonism of catecholamines at peripheral (especially cardiac) adrenergic neuron sites, leading to decreased cardiac output, (2) a central effect leading to reduced sympathetic outflow to the periphery, and (3) suppression of renin activity. The results from long-term studies have not shown any diminution of the antihypertensive efficacy of atenolol tablets with prolonged use.
By blocking the positive chronotropic and inotropic effects of catecholamines and by decreasing blood pressure, atenolol generally reduces the oxygen requirements of the heart at any given level of effort, making it useful for many patients in the long-term management of angina pectoris. On the other hand, atenolol can increase oxygen requirements by increasing left ventricular fiber length and end diastolic pressure, particularly in patients with heart failure.
In a multicenter clinical trial (ISIS-1) conducted in 16,027 patients with suspected myocardial infarction, patients presenting within 12 hours (mean = 5 hours) after the onset of pain were randomized to either conventional therapy plus atenolol tablets (n = 8,037), or conventional therapy alone (n = 7,990). Patients with a heart rate of < 50 bpm or systolic blood pressure < 100 mmHg, or with other contraindications to beta blockade were excluded. Thirty-eight percent of each group were treated within 4 hours of onset of pain. The mean time from onset of pain to entry was 5.0 ± 2.7 hours in both groups. Patients in the atenolol group were to receive atenolol I.V. injection 5 mg to 10 mg given over 5 minutes plus atenolol tablets 50 mg every 12 hours orally on the first study day (the first oral dose administered about 15 minutes after the I.V. dose) followed by either atenolol tablets 100 mg once daily or atenolol tablets 50 mg twice daily on days 2 to 7. The groups were similar in demographic and medical history characteristics and in electrocardiographic evidence of myocardial infarction, bundle branch block, and first degree atrioventricular block at entry.
During the treatment period (days 0 to 7), the vascular mortality rates were 3.89% in the atenolol tablets group (313 deaths) and 4.57% in the control group (365 deaths). This absolute difference in rates, 0.68%, is statistically significant at the P < 0.05 level. The absolute difference translates into a proportional reduction of 15% (3.89-4.57/4.57 = -0.15). The 95% confidence limits are 1% to 27%. Most of the difference was attributed to mortality in days 0 to 1 (atenolol tablets - 121 deaths; control - 171 deaths).
Despite the large size of the ISIS-1 trial, it is not possible to identify clearly subgroups of patients most likely or least likely to benefit from early treatment with atenolol. Good clinical judgment suggests, however, that patients who are dependent on sympathetic stimulation for maintenance of adequate cardiac output and blood pressure are not good candidates for beta blockade. Indeed, the trial protocol reflected that judgment by excluding patients with blood pressure consistently below 100 mmHg systolic. The overall results of the study are compatible with the possibility that patients with borderline blood pressure (less than 120 mmHg systolic), especially if over 60 years of age, are less likely to benefit.
The mechanism through which atenolol improves survival in patients with definite or suspected acute myocardial infarction is unknown, as is the case for other beta-blockers in the postinfarction setting. Atenolol, in addition to its effects on survival, has shown other clinical benefits including reduced frequency of ventricular premature beats, reduced chest pain, and reduced enzyme elevation.
Atenolol Geriatric Pharmacology
In general, elderly patients present higher atenolol plasma levels with total clearance values about 50% lower than younger subjects. The half-life is markedly longer in the elderly compared to younger subjects. The reduction in atenolol clearance follows the general trend that the elimination of renally excreted drugs is decreased with increasing age.