FLUCONAZOLE tablet [Golden State Medical Supply, Inc.]


FLUCONAZOLE tablet [Golden State Medical Supply, Inc.]

The convenience and efficacy of the single dose oral tablet of fluconazole regimen for the treatment of vaginal yeast infections should be weighed against the acceptability of a higher incidence of drug related adverse events with fluconazole (26%) versus intravaginal agents (16%) in U.S. comparative clinical studies. (See ADVERSE REACTIONSand CLINICAL STUDIES.)

(See CONTRAINDICATIONS.) Fluconazole is a moderate CYP2C9 and CYP3A4 inhibitor. Fluconazole is also a strong inhibitor of CYP2C19. Patients treated with fluconazole, who are also concomitantly treated with drugs with a narrow therapeutic window metabolized through CYP2C9 and CYP3A4, should be monitored for adverse reactions associated with the concomitantly administered drugs. In addition to the observed/documented interactions mentioned below, there is a risk of increased plasma concentration of other compounds metabolized by CYP2C9, CYP2C19, and CYP3A4 co-administered with fluconazole. Therefore, caution should be exercised when using these combinations and the patients should be carefully monitored. The enzyme inhibiting effect of fluconazole persists 4 to 5 days after discontinuation of fluconazole treatment due to the long half-life of fluconazole. Clinically or potentially significant drug interactions between fluconazole and the following agents/classes have been observed and are described in greater detail below:

Abrocitinib:Drug interaction studies indicate that when co-administered with fluconazole (strong inhibitor of CYP2C19; moderate inhibitor of CYP2C9 and CYP3A4), the systemic exposure of abrocitinib and its active metabolites increased (See CLINICAL PHARMACOLOGY). Avoid concomitant use of abrocitinib with fluconazole. Refer to the abrocitinib Prescribing Information for additional details.

Alfentanil:A study observed a reduction in clearance and distribution volume as well as prolongation of t ½of alfentanil following concomitant treatment with fluconazole. A possible mechanism of action is fluconazole's inhibition of CYP3A4. Dosage adjustment of alfentanil may be necessary.

Amiodarone:Concomitant administration of fluconazole with amiodarone may increase QT prolongation. Caution must be exercised if the concomitant use of fluconazole and amiodarone is necessary, notably with high-dose fluconazole (800 mg).

Amitriptyline, nortriptyline:Fluconazole increases the effect of amitriptyline and nortriptyline. 5-nortriptyline and/or S-amitriptyline may be measured at initiation of the combination therapy and after one week. Dosage of amitriptyline/nortriptyline should be adjusted, if necessary.

Amphotericin B:Concurrent administration of fluconazole and amphotericin B in infected normal and immunosuppressed mice showed the following results: a small additive antifungal effect in systemic infection with Candida albicans, no interaction in intracranial infection with Cryptococcus neoformans, and antagonism of the two drugs in systemic infection with A. fumigatus. The clinical significance of results obtained in these studies is unknown.

Azithromycin:An open-label, randomized, three-way crossover study in 18 healthy subjects assessed the effect of a single 1200 mg oral dose of azithromycin on the pharmacokinetics of a single 800 mg oral dose of fluconazole as well as the effects of fluconazole on the pharmacokinetics of azithromycin. There was no significant pharmacokinetic interaction between fluconazole and azithromycin.

Calcium channel blockers:Certain calcium channel antagonists (nifedipine, isradipine, amlodipine, verapamil, and felodipine) are metabolized by CYP3A4. Fluconazole has the potential to increase the systemic exposure of the calcium channel antagonists. Frequent monitoring for adverse events is recommended.

Carbamazepine:Fluconazole inhibits the metabolism of carbamazepine and an increase in serum carbamazepine of 30% has been observed. There is a risk of developing carbamazepine toxicity. Dosage adjustment of carbamazepine may be necessary depending on concentration measurements/effect.

Celecoxib:During concomitant treatment with fluconazole (200 mg daily) and celecoxib (200 mg), the celecoxib C maxand AUC increased by 68% and 134%, respectively. Half of the celecoxib dose may be necessary when combined with fluconazole.

Coumarin-type anticoagulants:Prothrombin time may be increased in patients receiving concomitant fluconazole and coumarin-type anticoagulants. In post-marketing experience, as with other azole antifungals, bleeding events (bruising, epistaxis, gastrointestinal bleeding, hematuria, and melena) have been reported in association with increases in prothrombin time in patients receiving fluconazole concurrently with warfarin. Careful monitoring of prothrombin time in patients receiving fluconazole and coumarin-type anticoagulants is recommended. Dose adjustment of warfarin may be necessary. (See CLINICAL PHARMACOLOGY: Drug Interaction Studies.)

Cyclophosphamide:Combination therapy with cyclophosphamide and fluconazole results in an increase in serum bilirubin and serum creatinine. The combination may be used while taking increased consideration to the risk of increased serum bilirubin and serum creatinine.

Cyclosporine:Fluconazole significantly increases cyclosporine levels in renal transplant patients with or without renal impairment. Careful monitoring of cyclosporine concentrations and serum creatinine is recommended in patients receiving fluconazole and cyclosporine. (See CLINICAL PHARMACOLOGY: Drug Interaction Studies.) This combination may be used by reducing the dosage of cyclosporine depending on cyclosporine concentration.

Fentanyl:One fatal case of possible fentanyl-fluconazole interaction was reported. The author judged that the patient died from fentanyl intoxication. Furthermore, in a randomized crossover study with 12 healthy volunteers, it was shown that fluconazole delayed the elimination of fentanyl significantly. Elevated fentanyl concentration may lead to respiratory depression.

HMG-CoA reductase inhibitors:The risk of myopathy and rhabdomyolysis increases when fluconazole is co-administered with HMG-CoA reductase inhibitors metabolized through CYP3A4, such as atorvastatin and simvastatin, or through CYP2C9, such as fluvastatin (decreased hepatic metabolism of the statin). If concomitant therapy is necessary, the patient should be observed for symptoms of myopathy and rhabdomyolysis and creatinine kinase should be monitored. HMG-CoA reductase inhibitors should be discontinued if a marked increase in creatinine kinase is observed or myopathy/rhabdomyolysis is diagnosed or suspected. Dose reduction of statins may be needed. Refer to the statin-specific prescribing information for details.

Hydrochlorothiazide:In a pharmacokinetic interaction study, co-administration of multiple dose hydrochlorothiazide to healthy volunteers receiving fluconazole increased plasma concentrations of fluconazole by 40%. An effect of this magnitude should not necessitate a change in the fluconazole dose regimen in subjects receiving concomitant diuretics.

Ibrutinib:Moderate inhibitors of CYP3A4 such as fluconazole may increase plasma ibrutinib concentrations and increase risk of adverse reactions associated with ibrutinib. If ibrutinib and fluconazole are concomitantly administered, reduce the dose of ibrutinib as instructed in ibrutinib prescribing information and the patient should be frequently monitored for any adverse reactions associated with ibrutinib.

Ivacaftor and fixed dose ivacaftor combinations (e.g., tezacaftor/ivacaftor and ivacaftor/tezacaftor/elexacaftor):Co-administration with ivacaftor, a cystic fibrosis transmembrane conductance regulator (CFTR) potentiator, increased ivacaftor exposure by 3-fold. If used concomitantly with a moderate inhibitor of CYP3A4, such as fluconazole, a reduction in the dose of ivacaftor (or ivacaftor combination) is recommended as instructed in the ivacaftor (or ivacaftor combination) prescribing information.

Lemborexant:Concomitant administration of fluconazole increased lemborexant C maxand AUC by approximately 1.6- and 4.2-fold, respectively which is expected to increase risk of adverse reactions, such as somnolence. Avoid concomitant use of fluconazole with lemborexant.

Losartan:Fluconazole inhibits the metabolism of losartan to its active metabolite (E-31 74) which is responsible for most of the angiotensin II-receptor antagonism which occurs during treatment with losartan. Patients should have their blood pressure monitored continuously.

Lurasidone:Concomitant use of moderate inhibitors of CYP3A4 such as fluconazole may increase lurasidone plasma concentrations. If concomitant use cannot be avoided, reduce the dose of lurasidone as instructed in the lurasidone prescribing information.

Methadone:Fluconazole may enhance the serum concentration of methadone. Dosage adjustment of methadone may be necessary.

Non-steroidal anti-inflammatory drugs:The C maxand AUC of flurbiprofen were increased by 23% and 81%, respectively, when co-administered with fluconazole compared to administration of flurbiprofen alone. Similarly, the C maxand AUC of the pharmacologically active isomer [S-(+)-ibuprofen] were increased by 15% and 82%, respectively, when fluconazole was co-administered with racemic ibuprofen (400 mg) compared to administration of racemic ibuprofen alone.

Although not specifically studied, fluconazole has the potential to increase the systemic exposure of other non-steroidal anti-inflammatory drugs (NSAIDs) that are metabolized by CYP2C9 (e.g., naproxen, lornoxicam, meloxicam, diclofenac). Frequent monitoring for adverse events and toxicity related to NSAIDs is recommended. Adjustment of dosage of NSAIDs may be needed.

Olaparib:Moderate inhibitors of CYP3A4 such as fluconazole increase olaparib plasma concentrations; concomitant use is not recommended. If the combination cannot be avoided, reduce the dose of olaparib as instructed in the LYNPARZA ®(Olaparib) Prescribing Information.

Oral contraceptives:Two pharmacokinetic studies with a combined oral contraceptive have been performed using multiple doses of fluconazole. There were no relevant effects on hormone level in the 50 mg fluconazole study, while at 200 mg daily, the AUCs of ethinyl estradiol and levonorgestrel were increased 40% and 24%, respectively. Thus, multiple-dose use of fluconazole at these doses is unlikely to have an effect on the efficacy of the combined oral contraceptive.

Oral hypoglycemics:Clinically significant hypoglycemia may be precipitated by the use of fluconazole with oral hypoglycemic agents; one fatality has been reported from hypoglycemia in association with combined fluconazole and glyburide use. Fluconazole reduces the metabolism of tolbutamide, glyburide, and glipizide and increases the plasma concentration of these agents. When fluconazole is used concomitantly with these or other sulfonylurea oral hypoglycemic agents, blood glucose concentrations should be carefully monitored and the dose of the sulfonylurea should be adjusted as necessary. (See CLINICAL PHARMACOLOGY: Drug Interaction Studies.)

Phenytoin:Fluconazole increases the plasma concentrations of phenytoin. Careful monitoring of phenytoin concentrations in patients receiving fluconazole and phenytoin is recommended. (See CLINICAL PHARMACOLOGY: Drug Interaction Studies.)

Pimozide:Although not studied in vitroor in vivo, concomitant administration of fluconazole with pimozide may result in inhibition of pimozide metabolism. Increased pimozide plasma concentrations can lead to QT prolongation and rare occurrences of torsade de pointes. Co-administration of fluconazole and pimozide is contraindicated.

Prednisone:There was a case report that a liver-transplanted patient treated with prednisone developed acute adrenal cortex insufficiency when a three month therapy with fluconazole was discontinued. The discontinuation of fluconazole presumably caused an enhanced CYP3A4 activity which led to increased metabolism of prednisone. Patients on long-term treatment with fluconazole and prednisone should be carefully monitored for adrenal cortex insufficiency when fluconazole is discontinued.

Quinidine:Although not studied in vitroor in vivo, concomitant administration of fluconazole with quinidine may result in inhibition of quinidine metabolism. Use of quinidine has been associated with QT prolongation and rare occurrences of torsade de pointes. Co-administration of fluconazole and quinidine is contraindicated. (See CONTRAINDICATIONS.)

Rifabutin:There have been reports that an interaction exists when fluconazole is administered concomitantly with rifabutin, leading to increased serum levels of rifabutin up to 80%. There have been reports of uveitis in patients to whom fluconazole and rifabutin were co-administered. Patients receiving rifabutin and fluconazole concomitantly should be carefully monitored. (See CLINICAL PHARMACOLOGY: Drug Interaction Studies.)

Rifampin:Rifampin enhances the metabolism of concurrently administered fluconazole. Depending on clinical circumstances, consideration should be given to increasing the dose of fluconazole when it is administered with rifampin. (See CLINICAL PHARMACOLOGY: Drug Interaction Studies.)

Saquinavir:Fluconazole increases the AUC of saquinavir by approximately 50%, C maxby approximately 55%, and decreases the clearance of saquinavir by approximately 50% due to inhibition of saquinavir's hepatic metabolism by CYP3A4 and inhibition of P-glycoprotein. Dosage adjustment of saquinavir may be necessary.

Short-acting benzodiazepines:Following oral administration of midazolam, fluconazole resulted in substantial increases in midazolam concentrations and psychomotor effects. This effect on midazolam appears to be more pronounced following oral administration of fluconazole than with fluconazole administered intravenously. If short-acting benzodiazepines, which are metabolized by the cytochrome P450 system, are concomitantly administered with fluconazole, consideration should be given to decreasing the benzodiazepine dosage, and the patients should be appropriately monitored. (See CLINICAL PHARMACOLOGY: Drug Interaction Studies.)

Sirolimus:Fluconazole increases plasma concentrations of sirolimus presumably by inhibiting the metabolism of sirolimus via CYP3A4 and P-glycoprotein. This combination may be used with a dosage adjustment of sirolimus depending on the effect/concentration measurements.

Tacrolimus:Fluconazole may increase the serum concentrations of orally administered tacrolimus up to 5 times due to inhibition of tacrolimus metabolism through CYP3A4 in the intestines. No significant pharmacokinetic changes have been observed when tacrolimus is given intravenously. Increased tacrolimus levels have been associated with nephrotoxicity. Dosage of orally administered tacrolimus should be decreased depending on tacrolimus concentration. (See CLINICAL PHARMACOLOGY: Drug Interaction Studies.)

Theophylline:Fluconazole increases the serum concentrations of theophylline. Careful monitoring of serum theophylline concentrations in patients receiving fluconazole and theophylline is recommended. (See CLINICAL PHARMACOLOGY: Drug Interaction Studies.)

Tofacitinib:Systemic exposure to tofacitinib is increased when tofacitinib is co-administered with fluconazole. Reduce the dose of tofacitinib when given concomitantly with fluconazole (i.e., from 5 mg twice daily to 5 mg once daily as instructed in the XELJANZ ®[tofacitinib] label). (See CLINICAL PHARMACOLOGY: Drug Interaction Studies.)

Tolvaptan:Plasma exposure to tolvaptan is significantly increased (200% in AUC; 80% in C max) when tolvaptan, a CYP3A4 substrate, is co-administered with fluconazole, a moderate CYP3A4 inhibitor. This interaction may result in the risk of a significant increase in adverse reactions associated with tolvaptan, particularly significant diuresis, dehydration, and acute renal failure. If tolvaptan and fluconazole are concomitantly administered, the tolvaptan dose should be reduced as instructed in the tolvaptan prescribing information and the patient should be frequently monitored for any adverse reactions associated with tolvaptan.

Triazolam:Fluconazole increases the AUC of triazolam (single dose) by approximately 50%, C maxby 20 to 32%, and increases t½ by 25 to 50% due to the inhibition of metabolism of triazolam. Dosage adjustments of triazolam may be necessary.

Vinca alkaloids:Although not studied, fluconazole may increase the plasma levels of the vinca alkaloids (e.g., vincristine and vinblastine) and lead to neurotoxicity, which is possibly due to an inhibitory effect on CYP3A4.

Vitamin A:Based on a case report in one patient receiving combination therapy with all-trans-retinoid acid (an acid form of vitamin A) and fluconazole, central nervous system (CNS) related undesirable effects have developed in the form of pseudotumor cerebri, which disappeared after discontinuation of fluconazole treatment. This combination may be used but the incidence of CNS related undesirable effects should be borne in mind.

Voriconazole:Avoid concomitant administration of voriconazole and fluconazole. Monitoring for adverse events and toxicity related to voriconazole is recommended; especially, if voriconazole is started within 24 h after the last dose of fluconazole. (See CLINICAL PHARMACOLOGY: Drug Interaction Studies.)

Zidovudine:Fluconazole increases the C maxand AUC of zidovudine by 84% and 74%, respectively, due to an approximately 45% decrease in oral zidovudine clearance. The half-life of zidovudine was likewise prolonged by approximately 128% following combination therapy with fluconazole. Patients receiving this combination should be monitored for the development of zidovudine-related adverse reactions. Dosage reduction of zidovudine may be considered.

Physicians should be aware that interaction studies with medications other than those listed in the CLINICAL PHARMACOLOGYsection have not been conducted, but such interactions may occur.

Previous articleNext article

POPULAR CATEGORY

corporate

10754

tech

11464

entertainment

13216

research

6037

misc

14055

wellness

10711

athletics

14069